248 research outputs found

    Phosphorylation of the liver X receptors

    Get PDF
    AbstractThe liver X receptors (LXRs) function as nutritional sensors for cholesterol and have important roles in lipid metabolism, glucose homeostasis, and inflammation. We provide the first evidence that LXRs are phosphorylated proteins. Mutational analysis and metabolic labeling indicate LXRα is phosphorylated on serine 198 in the hinge region. This is a consensus target for the MAPK family. A phosphorylation-deficient mutant, LXRα S198A, remains nuclear and responds to ligands like the wild-type protein. The biological significance of LXR phosphorylation remains to be elucidated but could provide a novel mechanism for the regulation of LXR signaling pathways and cellular metabolism

    PON2 Deficiency Leads to Increased Susceptibility to Diet-Induced Obesity.

    Get PDF
    (1) Background: Paraoxonase 2 (PON2) is a ubiquitously expressed protein localized to endoplasmic reticulum and mitochondria. Previous studies have shown that PON2 exhibits anti-oxidant and anti-inflammatory functions, and PON2-deficient (PON2-def) mice are more susceptible to atherosclerosis. Furthermore, PON2 deficiency leads to impaired mitochondrial function. (2) Methods: In this study, we examined the susceptibility of PON2-def mice to diet-induced obesity. (3) Results: After feeding of an obesifying diet, the PON2-def mice exhibited significantly increased body weight due to increased fat mass weight as compared to the wild-type (WT) mice. The increased adiposity was due, in part, to increased adipocyte hypertrophy. PON2-def mice had increased fasting insulin levels and impaired glucose tolerance after diet-induced obesity. PON2-def mice had decreased oxygen consumption and energy expenditure. Furthermore, the oxygen consumption rate of subcutaneous fat pads from PON2-def mice was lower compared to WT mice. Gene expression analysis of the subcutaneous fat pads revealed decreased expression levels of markers for beige adipocytes in PON2-def mice. (4) Conclusions: We concluded that altered systemic energy balance, perhaps due to decreased beige adipocytes and mitochondrial dysfunction in white adipose tissue of PON2-def mice, leads to increased obesity in these mice
    • …
    corecore